Overview of MARFC Probabilistic River Forecasts

Ned Pryor
Joe Ostrowski
Middle Atlantic RFC
April 2004

MARFC AREA

April 2004 NWS/NOAA

Implementation Steps

- Calibrate basin with continuous model
- Set up Ensemble Streamflow Prediction (ESP) for each basin
- Use ESPADP software to analyze traces
- Automated mechanism to generate forecasts and graphics
- Transmit graphics to AHPS web site

Calibration Status

- Continuous-API Model
- Snow Model
- Routings
- Clean Precip/Temp Data Sets
- Approximately 160 basins
- 1st Round of Calibrations just completed
- Operational Benefits

Longer Term Probabilistic Forecasts

- Traditional 30-day ESP forecasts
- 100 Basins-mostly Susquehanna and Delaware (150 total)
- 14 Reservoir inflow forecasts (18 total)
- Generated weekly
- "Basic" AHPS requirement
- Spring Flood Outlooks

Shorter Term Probabilistic Forecasts

- 7-day probabilistic river forecasts
- PQPF/PQTF
- Demonstration of short-term approach
- Juniata & Schuylkill Basins
- 18 points issued daily
- 6 additional points coming

Implementation Schedule

- 30-day forecasts for Potomac, Shenandoah and NJ basins - Q4 FY2004
- 30-day forecasts for James and Appomattox Basins – Q1 FY2005
- 7-day PQPF forecasts for 7 additional basins – Q3 FY2004

MARFC Home Page

April 2004

NWS/NOAA

NWS AHPS Page

WFO BGM AHPS Page

Wilkes-Barre, PA

30-Day River Traces

Weekly Exceedance-Stage

Weekly Exceedance-Volume

Exceedance Probability-Stage

Exceedance Probability-Flow

April 2004 NWS/NOAA

Inflows to Water Supply Reservoirs

- Most widely used product
- Inflows to 12 COE multi-purpose reservoirs
- Inflows to 2 New York City water supply reservoirs
- NYC DEP uses product operationally

BGM AHPS Page

NYC Cannonsville Reservoir

Exceedance Probability-Flow

Spring Flood Potential Outlook

7-Day Probabilistic River Forecasts

- Current Basin Conditions
- Short term probabilistic precipitation and temperatures (PQPF/PQTF)
- 24-hour PQPF merged with 6 days of climo
- QPF scenarios based on comparison of historic forecast and observed MAPs
- 3 graphics generated daily for 18 basins in PA-Juniata (CTP) and Schuylkill (PHI) Basins

Operational Steps

- Automated process run off cron on Linux workstation
- Transfer mods from operational FGROUP to test FGROUP
- Save Carryover
- Determine and insert start/end dates in PQPF control file

Operational Steps (cont'd)

- Run fcst_ens_compu script to generate PQPF/PQTF time-series
- Run FSCT/ESP for the FGROUP
- Generate 3 ESPADP graphics for each segment using ESPADP in batch mode
- Transfer graphics to LDAD->ER AHPS server
- Archive

WFO CTP AHPS Page

Frankstown Br. Juniata River at Williamsburg, PA

April 2004

NWS/NOAA

Frankstown Br. Juniata River at Williamsburg, PA

7-Day Expected Value Plot

7-Day PQPF Traces

7-Day Exceedance Histogram

April 2004 NWS/NOAA

<u>Additional Projects</u>

- Complete "Basic" AHPS Q1-FY2005
- Expand PQPF program to other basins/HSAs
- Use 48-hour QPF to drive PQPF
- Plot deterministic forecast on the expected value plot for comparison

Additional Projects (cont'd)

- Continue to solicit feedback from users
- Assist HSAs with explanation of product content and utility
- Verification
- Incorporate probability info into text products

<u>Lessons Learned</u>

- User feedback-SRBC sponsored users group meetings
- 30-day reservoir inflow forecast most used probabilistic forecast
- Beneficial input to Spring Flood Potential Outlooks
- Enhanced relationships with cooperators (U.S.COE, USGS, NYC DEP)

Lessons Learned

- 7-day PQPF forecasts are good contingency forecasts
- Describe a range of outcomes that help address HSA questions..."What if.."
- Wide range of potential river responses is not always pleasing...depicts difficulty in forecasting precipitation

Lessons Learned

- Need capability to run in background
- Requires clean historical data and dependable software
- Weak link is transfer to AHPS web site
- Short-term products unique hard to find in current AHPS web site

Flood Mapping

 Provide areal extent of flooding referenced against well-understood markings (streets, structures, landmarks) for water elevation forecasts

At multiple locations along river reach

Flood Mapping Implementation

- SRBC funds/OHD support
- Water surface profile
 - NWS FLDWAV (SHRT?)
 - Data collection
 - Calibration
 - Verification
 - Routine generation
 - deterministic
 - probabilistic

Test Area

Web-based Image Generation

- Internet map service
- Peaks in forecast period
- User interaction
 - User selectable layers
 - Zoom
- Prototype site:
 - http://nwshqfld.nws.noaa.gov
 - Autodesk plug-in required

<u>Status</u>

- Single location
 - Lewistown on Juniata River
- Daily Background processing
 - After routine operations
 - Cron initiated
 - FLDWAV on Linux
 - FLDVIEW on HP WS

Stats

- FLDWAV performance Linux
 - Deterministic, entire Susq. few seconds
 - Probabilistic, 7 day PQPF 35+ seconds
 - Probabilistic, 30 day ~ 3 minutes
- FLDVIEW performance HP WS
 - Fully automated
 - 7+ minutes deterministic (one layer)
 - 35+ minutes, 5 layer probabilistic

Lessons Learned

- FLDVIEW implementation concerns
 - RFC KSAs
- FLDWAV concerns
 - Calibration
 - Monitoring
 - SHRT?
- GIS performance
 - NWS GIS Future
 - Fragile automated process
 - No true background capabilities

Lessons Learned

- User issues for web access
 - Plug-in
- User feedback on map service
 - Design
 - Performance
 - User-friendliness